

Maxmin Strategies

Game Theory Course: Jackson, Leyton-Brown & Shoham

Game Theory Course: Jackson, Leyton-Brown & Shoham

Maxmin Strategies

Maxmin Strategies

- Player *i*'s maxmin strategy is a strategy that maximizes *i*'s worst-case payoff, in the situation where all the other players (whom we denote -i) happen to play the strategies which cause the greatest harm to *i*.
- The maxmin value (or safety level) of the game for player *i* is that minimum payoff guaranteed by a maxmin strategy.

Definition (Maxmin)

The maxmin strategy for player i is $\arg \max_{s_i} \min_{s_{-i}} u_i(s_1, s_2)$, and the maxmin value for player i is $\max_{s_i} \min_{s_{-i}} u_i(s_1, s_2)$.

• Why would *i* want to play a maxmin strategy?

Maxmin Strategies

- Player *i*'s maxmin strategy is a strategy that maximizes *i*'s worst-case payoff, in the situation where all the other players (whom we denote -i) happen to play the strategies which cause the greatest harm to *i*.
- The maxmin value (or safety level) of the game for player *i* is that minimum payoff guaranteed by a maxmin strategy.

Definition (Maxmin)

The maxmin strategy for player i is $\arg \max_{s_i} \min_{s_{-i}} u_i(s_1, s_2)$, and the maxmin value for player i is $\max_{s_i} \min_{s_{-i}} u_i(s_1, s_2)$.

- Why would *i* want to play a maxmin strategy?
 - a conservative agent maximizing worst-case payoff
 - a paranoid agent who believes everyone is out to get him

Minmax Strategies

- Bayesian Normality methods water Bayesian Normality and the second secon
- Player *i*'s minmax strategy against player -i in a 2-player game is strategies a strategy that minimizes -i's best-case payoff, and the minmax value for *i* against -i is payoff.

Definition (Minmax, 2-player)

In a two-player game, the minmax strategy for player i against player -i is $\arg\min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$, and player -i's minmax value is $\min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$.

• Why would *i* want to play a minmax strategy?

Minmax Strategies

- Bayesine poor and the second s
- Player *i*'s minmax strategy against player -i in a 2-player game is strategies a strategy that minimizes -i's best-case payoff, and the minmax value for *i* against -i is payoff.

Definition (Minmax, 2-player)

In a two-player game, the minmax strategy for player i against player -i is $\arg\min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$, and player -i's minmax value is $\min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$.

- Why would *i* want to play a minmax strategy?
 - to punish the other agent as much as possible

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

1. Each player's maxmin value is equal to his minmax value. The maxmin value for player 1 is called the value of the game.

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

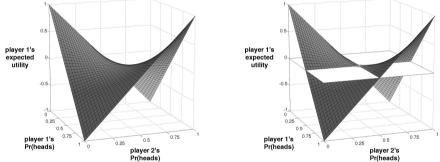
- 1. Each player's maxmin value is equal to his minmax value. The maxmin value for player 1 is called the value of the game.
- 2. For both players, the set of maxmin strategies coincides with the set of minmax strategies.

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

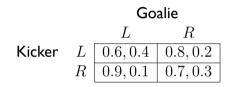
- 1. Each player's maxmin value is equal to his minmax value. The maxmin value for player 1 is called the value of the game.
- 2. For both players, the set of maxmin strategies coincides with the set of minmax strategies.
- Any maxmin strategy profile (or, equivalently, minmax strategy profile) is a Nash equilibrium. Furthermore, these are all the Nash equilibria. Consequently, all Nash equilibria have the same payoff vector (namely, those in which player I gets the value of the game).

Saddle Point: Matching Pennies

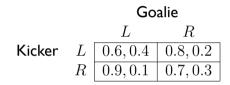


2×2 Zero-sum Games

- Minmax or maxmin produces the same result as method for finding NE in general 2×2 games;
- Check against penalty kick game.

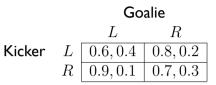


How does the kicker maximize his minimum?

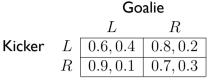


How does the kicker maximize his minimum?

 $\max_{s_1} \min_{s_2} \left[s_1(L) s_2(L) \cdot 0.6 + s_1(L) s_2(R) \cdot 0.8 + s_1(R) s_2(L) \cdot 0.9 + s_1(R) s_2(R) \cdot 0.7 \right]$



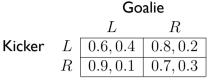
What is his minimum?



What is his minimum?

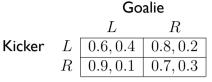
 $\min_{s_2} \left[s_1(L) s_2(L) \cdot 0.6 + s_1(L) s_2(R) \cdot 0.8 + s_1(R) s_2(L) \cdot 0.9 + s_1(R) s_2(R) \cdot 0.7 \right]$

$$= \min_{s_2} \left[\begin{array}{c} s_1(L)s_2(L) \cdot 0.6 + s_1(L)(1 - s_2(L)) \cdot 0.8 + \\ + (1 - s_1(L))s_2(L) \cdot 0.9 + (1 - s_1(L))(1 - s_2(L)) \cdot 0.7 \end{array} \right]$$



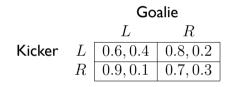
What is his minimum?

$$\begin{split} \min_{s_2} \left[s_1(L) s_2(L) \cdot 0.6 + s_1(L) s_2(R) \cdot 0.8 + s_1(R) s_2(L) \cdot 0.9 + s_1(R) s_2(R) \cdot 0.7 \right] \\ &= \min_{s_2} \left[\begin{array}{c} s_1(L) s_2(L) \cdot 0.6 + s_1(L) (1 - s_2(L)) \cdot 0.8 + \\ + (1 - s_1(L)) s_2(L) \cdot 0.9 + (1 - s_1(L)) (1 - s_2(L)) \cdot 0.7 \end{array} \right] \\ &= \min_{s_2} \left[(0.2 - s_1(L) \cdot 0.4) \cdot s_2(L) + (0.7 + s_1(L) \cdot 0.1) \right] \end{split}$$



What is his minimum?

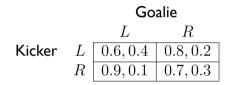
 $\min\left[s_1(L)s_2(L) \cdot 0.6 + s_1(L)s_2(R) \cdot 0.8 + s_1(R)s_2(L) \cdot 0.9 + s_1(R)s_2(R) \cdot 0.7\right]$ $= \min_{s_2} \left[\begin{array}{c} s_1(L)s_2(L) \cdot 0.6 + s_1(L)(1 - s_2(L)) \cdot 0.8 + \\ + (1 - s_1(L))s_2(L) \cdot 0.9 + (1 - s_1(L))(1 - s_2(L)) \cdot 0.7 \end{array} \right]$ $= \min \left[(0.2 - s_1(L) \cdot 0.4) \cdot s_2(L) + (0.7 + s_1(L) \cdot 0.1) \right]$ $\Rightarrow 0.2 - s_1(L) \cdot 0.4 = 0$ $\Rightarrow s_1(L) = 1/2, \ s_1(R) = 1/2$



How does the goalie minimize the kicker's maximum?

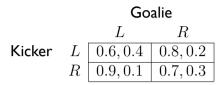
Game Theory Course: Jackson, Leyton-Brown & Shoham

Maxmin Strategies

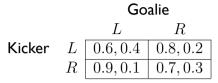


How does the goalie minimize the kicker's maximum?

 $\min_{s_2} \max_{s_1} \left[s_1(L) s_2(L) \cdot 0.6 + s_1(L) s_2(R) \cdot 0.8 + s_1(R) s_2(L) \cdot 0.9 + s_1(R) s_2(R) \cdot 0.7 \right]$



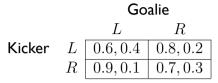
What is the kicker's maximum?



What is the kicker's maximum?

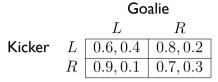
 $\max_{s_1} \left[s_1(L) s_2(L) \cdot 0.6 + s_1(L) s_2(R) \cdot 0.8 + s_1(R) s_2(L) \cdot 0.9 + s_1(R) s_2(R) \cdot 0.7 \right]$

$$= \max_{s_1} \left[\begin{array}{c} s_1(L)s_2(L) \cdot 0.6 + s_1(L)(1 - s_2(L)) \cdot 0.8 + \\ + (1 - s_1(L))s_2(L) \cdot 0.9 + (1 - s_1(L))(1 - s_2(L)) \cdot 0.7 \end{array} \right]$$



What is the kicker's maximum?

 $\max_{s_1} \left[s_1(L)s_2(L) \cdot 0.6 + s_1(L)s_2(R) \cdot 0.8 + s_1(R)s_2(L) \cdot 0.9 + s_1(R)s_2(R) \cdot 0.7 \right]$ = $\max_{s_1} \left[\begin{array}{c} s_1(L)s_2(L) \cdot 0.6 + s_1(L)(1 - s_2(L)) \cdot 0.8 + \\ + (1 - s_1(L))s_2(L) \cdot 0.9 + (1 - s_1(L))(1 - s_2(L)) \cdot 0.7 \end{array} \right]$ = $\max_{s_1} \left[(0.1 - s_2(L) \cdot 0.4) \cdot s_1(L) + (0.7 + s_2(L) \cdot 0.2) \right]$



What is the kicker's maximum?

 $\max\left[s_1(L)s_2(L) \cdot 0.6 + s_1(L)s_2(R) \cdot 0.8 + s_1(R)s_2(L) \cdot 0.9 + s_1(R)s_2(R) \cdot 0.7\right]$ $= \max_{s_1} \left[\begin{array}{c} s_1(L)s_2(L) \cdot 0.6 + s_1(L)(1 - s_2(L)) \cdot 0.8 + \\ + (1 - s_1(L))s_2(L) \cdot 0.9 + (1 - s_1(L))(1 - s_2(L)) \cdot 0.7 \end{array} \right]$ $= \max \left[(0.1 - s_2(L) \cdot 0.4) \cdot s_1(L) + (0.7 + s_2(L) \cdot 0.2) \right]$ s_1 $\Rightarrow 0.1 - s_2(L) \cdot 0.4 = 0$ $\Rightarrow s_2(L) = 1/4, \ s_2(R) = 3/4$

Game Theory Course: Jackson, Leyton-Brown & Shoham

Computing Minmax

For 2 players minmax is solvable with LP (Linear Programming).

Computing Minmax

For 2 players minmax is solvable with LP (Linear Programming).

$$\begin{array}{ll} \mbox{minimize} & U_1^* \\ \mbox{subject to} & \sum_{k \in A_2} u_1(a_1^j, a_2^k) \cdot s_2^k \leq U_1^* & \quad \forall j \in A_1 \\ & \sum_{k \in A_2} s_2^k = 1 \\ & s_2^k \geq 0 & \quad \forall k \in A_2 \end{array}$$

Bayesian Normal-Commences and the commences of the commence of the commences of the commences of the commences of the commences of the commence of the co